Jump to content
Aktovegin

Теория современного Спорта

Recommended Posts

Джо ДеФранко насчет тренировок спринтеров!!!

 

 


ВОПРОС: Мистер ДеФранко,
Какой ваш подход к тренировке спринтера на 100 метров? Можете ли вы дать пример работы на треке, специальных тренировок на развитие выносливости, и силовых тренировок? Мне было бы очень интересно узнать, что мне стоит делать в тренажерном зале, так как я считаю, что
мышечная масса может препятствовать росту скорости бега. По этой причине, я уверен, что мне нужно изменить свою программу тренировок.Спасибо, тренер!

ОТВЕТ: Я отвечал на подобный вопрос в гостевом форуме на сайте
T-Mag , но я снова рассмотрю основные моменты. Прежде всего, хочу заявить, что рекомендации ниже я даю для продвинутого спринтера – не для уровня старшей школы или новичка. Это большая разница.
Прежде всего, силовой тренинг является ИСКЛЮЧИТЕЛНО важным для всех спринтеров – особенно на дистанциях 100 м и короче! Чем короче дистанция в спринте, тем более важными становятся сила и мощность. К примеру, и Бэн Джонсон, и Морис Грин имели на своих телах немало мышц.
Это довольно глубокий вопрос, и нужно учитывать много индивидуальных факторов в тренировке спринтера. У меня нет времени, чтобы дать вам лично целую программу: но я могу дать несколько ключевых моментов, которыми я
сам пользуюсь при тренировке своих спринтеров. Надеюсь, это поможет вам создать работающую и эффективную программу для себя.
1. Чем быстрее ты, тем МЕНЬШЕ тебе нужен спринт. Спринт со 100%-м усилием создает большой стресс для ЦНС. Чем ты быстрее, тем больше времени нужно для восстановления между тренировками. Бег на всю дистанцию «на все деньги» можно делать раз в 7-10 дней для продвинутых атлетов.
2. Развивай скорость ДО того, как работать над скоростной выносливостью.
Другими словами, если ты медленный, какой толк строить «скоростную» выносливость? Тем не менее, я все еще вижу тренеров, который дают своим спринтерам на 100 м бегать 800 метров для «скоростной выносливости» на своих 100 метрах. Это полная бредятина! Те же 100 и 800 метров абсолютно различны в плане требования к энергетическим системам. Я начинаю работать над своими бегунами на 100 м с 10-ти метровых спринтов, и иду вверх. Помните, - чем короче гонка, тем всегда важнее будут старт и первые
10-ть метров!
3. Зная, что старт и первые 10 метров имеют решающее значение в коротких забегах, мы должны знать, как развивать эти два фактора. Первый шаг и первые 10 метров целиком зависят от ТЕХНИКИ и ОТНОСИТЕЛЬНОЙ
СИЛЫ. Развивайте вашу силу в тренажерном зале, а затем правильно тренируйте старт и первые 10 метров. (Вы можете работать над этим аспектом бега гораздо чаще, чем над другими. Поскольку это очень короткий
забег, то вы будете очень быстро восстанавливаться, также, риск получения
травмы будет меньше.)
4. После того, как вы достаточно хорошо развили взрывной старт, начните работать «вверх», бегая 30 м. 60 м и 100 м. Помните, вам нужно построить вашу скорость, чтобы затем развивать «выносливую» часть спринта.
5. Работайте в ТЗ в тех упражнениях, который имеют лучший перенос на спринт. Приседания, становые тяги, обратные выпады со штангой, приседания на одной ноге, обратные гиперэкстензии,
Glute-Ham-Raise, подтягивания, зашагивания и прочее. Кроме метода максимальных усилий, включайте в свои тренировки также и метод динамических усилий. Я считаю, что высокоповторные сеты должны иметь место в тренировке спринтера, но время имеет решающее значение. Также работайте в подходах на время. Например, если вы тренируете спринтера, цель которого пробежать 100 метров за 10,5 секунд, давайте ему выполнять сеты длиной в 10,5 секунд.
Допустим, нужно сделать как можно больше приседаний на одной ноге за 10,5 секунд. Выполняйте 2-3 недельные микро-циклы с одним упражнением, где целью будет не поднять больше, а поднимать БЫСТРЕЕ. Целью данного
вида тренировки является повышение скорости нарастания силы (и это НЕ значит рост скорости движения конечностей в спринте).
Вот некоторые советы, которые первыми пришли мне на ум. Надеюсь, они помогут. И да, вот еще, не забывайте о таком аспекте ваших тренировок, как «питание». Те люди, которые думают, что подъем весов делают их «громоздкими и медленными» обычно так думают потому, что сами едят всякое гавно! Помните, что подъем весов + плохое питание МОГУТ сделать вас медленнее! Так может быть потому, что ваша абсолютная сила вырастает, в то время как ваша относительная сила (сила на кг веса тела) уменьшится, если вы неправильно питаетесь.
Становитесь сильнее, питайтесь «чисто», работайте над гибкостью и практикуйте технику!
Помешало ли «слишком много» мышц скорости Бэна Джонсона?
Я так не думаю!

Share this post


Link to post
Share on other sites

Can massage reduce muscle soreness in bodybuilders?

Delayed onset muscle soreness (DOMS) is an often unwelcome accompaniment to resistance training. It is particularly common among bodybuilders, where high volumes of training and advanced techniques are often used.

 

DOMS can make it difficult to resume training the day or days after a hard training session. This makes it valuable to find ways of reducing DOMS. However, few methods have been identified that can genuinely make a difference. 

 

Previously, massage (and also self-manual therapies like foam rolling) have been suggested as ways to reduce DOMS, but they have not ever before been explored in bodybuilders or other athletes engaged in large volumes of resistance training.

 

The study

Efficacy of massage on muscle soreness, perceived recovery, physiological restoration and physical performance in male bodybuilders, by Kargarfard, Lam, Shariat, Shaw, Shaw & Tamrin, in Journal of Sports Sciences (2015)

 

What did the researchers do?

The researchers assessed the effects of massage on post-workout muscle soreness and muscle damage in a group of natural, male bodybuilders.

 

What are the key study features?

Using the PICO method, here are the key details:

  • Population: 30 healthy, natural male bodybuilders, aged 29 ± 4 years, randomly allocated to either a massage group or to a control group

  • Intervention: All subjects incurred a workout designed to produce DOMS. This workout comprised 5 sets of squats with 75% of 1RM to failure, followed by an additional 5 sets of leg press with 75% of 1RM to failure, followed by an isometric knee extension hold for time with the right leg using 50% of maximum isometric force. The subjects in the massage group received a massage 2 hours post-workout, comprising the standard techniques of effleurage, petrissage, and vibration.

Comparison: The two groups were compared with each other and with baseline measures

Outcomes: perceived muscle soreness (using a visual analog scale [VAS]), muscle damage as measured by serum creatine kinase (from blood samples), muscular performance (by reference to vertical jump height, agility test ability, and maximum voluntary isometric contraction (MVIC) knee extension torque.

 

What did the researchers find?

Effect of massage on DOMS

The researchers found that both groups displayed increases in muscle soreness post-workout for up to 72 hours. However, the increase in the massage group was significantly lower at all time points (24, 48 and 72 hours) compared to the control group.

 

Effect of massage on muscle damage

The researchers found that both groups displayed elevations in the markers of muscle damage post-workout. There was no significant difference between groups in markers of muscle damage (serum creatine kinase levels) at 24 hours. However, the massage group displayed a reduction in muscle damage markers at 48 and 72 hours, while the control group did not.

 

Effect of massage on muscular performance

The researchers found that MVIC knee extension torque was significantly reduced post-workout for up to 48 hours in the massage group but up to 72 hours in the control group. Similar results were observed for the vertical jump. For agility, both groups displayed reductions in performance but there was no difference between the groups at any time point.

 

What are the practical implications?

This study is a valuable finding for strength and conditioning, as it demonstrates that massage deserves a place within the standard recovery techniques for strength and power athletes performing regular, heavy resistance training. 

 

Such individuals are not necessarily limited to bodybuilders but may also include track and field athletes, American football and rugby players, and Olympic weightlifters.

 

Where funds are limited, self-manual therapies may also prove useful. Several studies have found that foam rolling is also effective for reducing DOMS, albeit not yet in bodybuilders or in athletes who undergo regular heavy resistance training.

 

 

 

Share this post


Link to post
Share on other sites
Спортсмены часто задают один и тот же вопрос: Каким образом организм хранит энергию?Почему именно так, а не иначе? Как наиболее экономично расходовать эту энергию? Мы попробуем ответить на эти вопросы
 
АТФ или аденозинтрифосфат является основным переносчиком энергии в клетке, играет исключительно важную роль в обмене энергии в организме и известен как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах.

При этом, общее количество АТФ в организме в каждый отдельно взятый момент составляет не более 250 грамм. Этого количества хватит лишь на несколько секунд работы мышц при максимальной нагрузке.

Возникает вопрос, если АТФ это универсальный источник энергии то почему бы не сделать в организме его запасы побольше?
Все дело в том, что молекула АТФ очень тяжелая и 1 моль АТФ весит 507,19 грамма.
При этом 1 моль АТФ дает нам энергии от 40 до 60 кДж.
1 Джоуль =0,238846 калориям.
Соответственно 40-60 кДж=9,5 до 14,3 кКал.
1 моль АТФ весом 507,19 грамм=9,5-14,3 кКал энергии.

При беге среднее потребление калорий составляет 1 кКал/кг/км. У тренированного человека несколько меньше.

Соответственно человек массой в 70 кг на преодоление дистанции в 10 километров тратит в среднем 700 кКал.

700 кКал в АТФ будет весить почти 30 килограмм!

Организму просто не выгодно запасать большие объемы энергии в форме АТФ.

В связи с этим, АТФ в организме является одним из самых часто обновляемых веществ; так, у человека продолжительность жизни одной молекулы АТФ менее 1 минуты. В течении же суток одна молекула АТФ проходит в среднем 2000-3000 циклов ресинтеза, а всего человеческий организм в среднем синтезирует в сутки около 40 килограмм АТФ.

Организм практически не создает запаса АТФ и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.

Для синтеза АТФ организм использует глюкозу которую депонирует в форме ГЛИКОГЕНА. Гликоген как способ хранения энергии организмом более эффективен. 1 моль глюкозы образует при аэробном гликолизе 38 моль АТФ, а весит при этом глюкоза 174 грамма на моль.

1 моль глюкозы весит 174 грамма, но при этом в процессе синтеза энергии дает 38 моль АТФ общим весом в 19,3 килограмм!!
Энергетический обмен глюкозы осуществляется одновременно в трех направления. Два из которых известны нам как анаэробные и не требуют присутствия кислорода при синтезе АТФ и один аэробный.

Анаэробный гликолиз 1 моль глюкозы сопровождается синтезом 2 моль АТФ и 2 моль лактата. При этом аэробный гликолиз 1 моль глюкозы сопровождается производством 38 моль АТФ.

Вот почему нам так важен при длительном беге именно аэробный гликолиз, то есть синтез энергии из глюкозы в присутствии кислорода.

Он просто гораздо более эффективен!

Запасы гликогена в нашем организме оцениваются в 300-400 грамм, что обеспечивает нас запасом энергии примерно в 1900-2200 ккалорий. Но этого запаса все равно мало даже для того чтобы пробежать марафон. Запасы гликогена полностью истощаются в течении 90 минут при усилии свыше 75% от МПК.

В чем же организм человека хранит основной запас энергии?

В ЖИРАХ. Деградация одной молекулы триглицерина освобождает в 13 раз больше энергии чем молекула глюкозы. Один грамм субстрата жиров (липидов) дает энергии 9 ккал против 4 ккал у углеводов. То есть в энергетическом плане липиды нам дают энергии в 2 раза больше чем углеводы в том же количестве.

В среднем, доля жира в организме человека близка к 10-15% у мужчин и 20% у женщин, что дает нам запас энергии равный почти 90 000 ккалорий!

Большее количество энергии организм запасает максимально эффективным способом в виде жиров.

Но есть одно но! Синтез энергии из жиров может протекать только в присутствии кислорода. И при этом, этот процесс требует затрат энергии!

Для получения энергии из жиров нам необходим кислород и …. углеводы, как источник энергии. Жиры горят в пламени глюкозы!
 
Помните?

Если мы хотим бежать долго и экономично мы должны двигаться в аэробном режиме для того чтобы обеспечить синтез энергии из жиров и максимально эффективно тратить запасы углеводов для обеспечения этого процесса (не забывая о дополнительном питании на длинных дистанциях).

Аэробный режим синтеза энергии соответствует максимальной нагрузке равной примерно 60-65% МПК (VO2max). Соответственно экономичность бега (эффективность потребления кислорода и сжигания калорий) будет снижается при превышении максимальной нагрузки выше 60-65% МПК, а при переходе к нагрузке выше 75% МПК резко упадет.

Регулярные тренировки способны повысить возможность организма к полному расщеплению липидов на 20-30 %. Эти изменения ощущаются на изменении жировой массы организма. Так с ростом тренированности средний процент жира в организме уменьшается и может достичь 5 % у мужчин и 10% у женщин.
1450123283_1.jpg.pagespeed.ce.ujKndYBsOa
Первый график это так называемая «кривая Howald (1974)» схематически показывает относительную долю трех энергетических систем в зависимости от продолжительности усилия.
1450123317_2.jpg.pagespeed.ce.1R0zl21Quc
Следующий график показывает долю жиров и углеводов в энергетическом обмене в зависимости от интенсивности усилия.
1450123301_3.jpg.pagespeed.ce.L7E-pH3NNQ
Третий график показывает распределение энергопотребления в четырехглавой мышце в зависимости от интенсивности усилия. Доля гликогена резко возрастает с ростом интенсивности. Доля липидов максимальна при МПК=57% и резко уменьшается при МПК свыше 72%.
1450123319_4.jpg.pagespeed.ce.F_TmmPex69
Ну и последний график показывает соотношение жиров в энергетических обменных процессах у тренированного и не тренированного человека.
Edited by jabiyev

Share this post


Link to post
Share on other sites

спасибо за материал, я это уже выставлял тут немного в другой форме, но все равно пусть люди читают и познают самих себя.

Самое важное как эти знания применить на практике, это главная проблема большинства тех кто ходят в зал или просто тренируются.

Share this post


Link to post
Share on other sites

Effect of Vegetarian Diets on Performance in Strength Sports

Chris Forbes-Ewan

Sportscience 6, sportsci.org/jour/0201/cf-e.htm, 2002 (3479 words)
Defence Nutrition Research Centre, Defence Science and Technology Organisation, Scottsdale, Tasmania 7260, Australia. Email.  Reviewed by Greg Cox, Sports Nutrition, Australian Institute of Sport, Canberra, Australia 2616

A lacto-ovovegetarian diet can provide all the nutrients required for optimal  health. Anecdotal reports suggest that many successful endurance athletes are vegetarians whereas few reports suggest that elite strength athletes follow a vegetarian diet.  Strength and power athletes almost invariably include meat in their diets, although it is unclear whether the benefits of meat consumption for strength and power are real or imagined. KEYWORDS: nutrition, resistance training. Reprint pdf · Reprint doc

 

Definitions

Introduction

Arguments in Favor of the Vegetarian Diet

Body Composition and Fitness of Vegetarians

Does Meat-eating Benefit Strength Athletes?

Human Evolution and Dietary Need

Conclusions

References

 

Definitions

Non-vegetarian or omnivore: eats foods of plant and animal origin, including meat, fowl, eggs, milk and other dairy products, and fish.

Lacto-ovovegetarian: eats predominantly foods of plant origin, with milk and other dairy products and eggs being the only foods of animal origin.

Vegan: eats foods only of plant origin.

Introduction

Last year a lively debate took place on the Sportscience mailing list about the effects of vegetarianism on sports performance, with particular reference to strength sports. The debate began with an assertion on a non-professional mailing list by a rock climber (who was not a nutritionist or physiologist) that a vegetarian diet is inferior to an omnivorous diet for the maintenance of strength and muscular endurance. He based this assertion on his personal experience and observations of other rock climbers. I sent this message to the Sportscience list for comment.  Here is a summary of the debate, which I have updated with relevant references to published work and some additional issues.  View the original messages by searching the list for vegetarian or viewing messages for June and July, 2001.

Arguments in Favor of the Vegetarian Diet

Bill Proulx (Appalachian State University, North Carolina), Stacey Sims (Massey at Wellington, New Zealand) and Deborah Shulman (address not provided) independently pointed out that from a nutritional viewpoint, vegetarian diets can provide all known essential nutrients in adequate quantities for strength training. Proulx went further and stated that a vegetarian diet might be expected to provide for better nutrition, with the exception of iron and zinc status. Janelle and Barr (1995) provided supporting evidence for generally more nutritious diets (at least with respect to health) among vegetarian compared to non-vegetarian women. The vegetarians (n=23) had significantly higher intakes of carbohydrate, riboflavin, niacin, vitamin B12, folate, vitamin C and ratio of polyunsaturated to saturated fat, and lower intakes of saturated fat than the nonvegetarians (n=22). However, of possible significance to strength sports, protein, zinc and copper intakes were significantly lower in the vegetarians.

Proulx sounded a note of caution in that the type of vegetarianism also needs to be considered. For example, a lacto-ovo-vegetarian diet might be expected to provide more protein, calcium and phosphorous than a vegan diet. However, in the study previously described, Janelle and Barr (1995) found no significant differences in levels of intake for protein or phosphorus between lacto-ovo-vegetarians (n=15) and vegans (n=8), while calcium intake was significantly lower in vegans. These authors also noted that there were fewer differences in nutrient intake between the non-vegetarian women and lacto-ovo-vegetarians than between the non-vegetarians and vegans. They concluded that the diets of their non-vegetarian subjects were approximately equivalent to those of the lacto-ovo-vegetarians, but noticeably different from those of the vegans. 

Because the vegan diet is less common than the lacto-ovo-vegetarian diet, and it appears to be quite different to the non-vegetarian diet in terms of nutrient intake, this paper investigates possible differences only between non-vegetarian and lacto-ovo-vegetarian diets in relation to sports performance (especially strength sports). Consequently, unless otherwise indicated, in the remainder of this paper the term ‘vegetarian’ refers to people who are lacto-ovo-vegetarians.

The belief that a vegetarian diet can provide adequate nutrition, at least to fuel endurance running, is supported by the findings of Eisinger et al. (1994). Vegetarian runners and omnivorous runners taking part in a 1,000-km race over 20 days had their food provided. The foods were matched so that if all food was eaten, total energy (18.8 MJ) and percentages of energy derived from carbohydrate, fat and protein (60:30:10 respectively) would be identical between diets. Over the period of the study, energy, carbohydrate, fat and protein intakes did not differ between groups, but vegetarian runners had higher intakes of dietary fiber and poly-unsaturated fatty acids and a lower intake of cholesterol than the omnivorous competitors. Estimated vitamin and mineral intakes were also higher in vegetarian runners, except for sodium chloride and cobalamin (vitamin B12). Half the competitors in each group finished the race, and the type of diet was not predictive of finishing time. Although this study imposed a particular nutritional quality of diet on the vegetarian competitors—and therefore cannot be said to have been wholly self-selected—it did illustrate that a well-planned vegetarian diet is not necessarily associated with reduced endurance performance compared to a non-vegetarian diet.

Body Composition and Fitness of Vegetarians

Although it appears that vegetarian diets can provide adequate overall nutrient intake for endurance activity, specific components of the diet may have special importance in strength sports. For example, it is possible that in non-vegetarians, higher protein intakes, or protein specifically obtained from meat, leads to greater muscularity. Another possibility is that meat eating may lead to increased muscular hypertrophy in response to resistance training.

Several groups of researchers have addressed the issue of differences in body dimensions between vegetarians and omnivores. O’Connell et al. (1989) found that height of vegetarian children under 10 y was consistently lower than US reference values. However, Seventh Day Adventist children who had vegetarian diets did not differ substantially from their omnivorous peers in mean stature, weight, mid-arm circumference, triceps or biceps skinfold thickness, and weight-for-height (Tayter & Stanek, (1989). The different findings in these two studies may derive from the inclusion of vegans in the former but not the latter study.

Hebbelinck et al. (1999) conducted anthropometric analyses (stature, weight, skinfold thicknesses), puberty ratings (where appropriate), and physical fitness (handgrip strength, standing long jump, sit-ups in 30 s, and heart-rate recovery following a step test) of vegetarian children, adolescents and young adults in the Netherlands. Compared to reference values…

      Vegetarian adolescents were of significantly lower stature, weight and body mass index, but there were no differences in stature or weight for the other age groups.

      Vegetarian children were of equal fitness, but vegetarian adolescents scored lower on standing long jump and 30-s sit-ups.

      Heart rate of vegetarian adolescents and young adults recovered substantially faster following the step test.

Hebbelinck et al. concluded that vegetarian adolescents and young adults performed better at the cardiorespiratory test, but the vegetarian adolescents scored lower on the strength and explosive power tests.

The possibility raised by the results of Hibbelinck et al.—that a vegetarian diet might actually lead to improved endurance performance compared to an omnivorous diet—was not supported in a review by Nieman (1999), who concluded that "some concerns have been raised about the nutrient status of vegetarian athletes, [but] a varied and well-planned vegetarian diet is compatible with successful athletic endeavor".  Nieman conceded that strength athletes probably need more protein than the US RDA of 0.8 mg/kg. His suggestion was 1.4-1.8 mg/kg, but he stated that even "vegan athletes can achieve optimal protein intake by careful planning, with an emphasis on protein-rich plant foods such as legumes, nuts and seeds, and whole-grain products".

Nieman did point out one difference between omnivores and vegetarians of possible significance to performance in strength and explosive sports: intramuscular creatine concentration. Creatine in the form of creatine phosphate is a source of energy in high-intensity exercise.  Depletion of creatine phosphate is a cause of fatigue in repeated bouts of such exercise, and possibly also in short-term endurance exercise. Vegetarians generally have less intramuscular creatine than omnivores (Maughan, 1995) because creatine is found only in muscle meat (providing an omnivore with about 1 g creatine per day), while the body itself produces a similar amount. Ironically, vegetarians may therefore derive greater benefit than omnivores from supplementation with creatine, but the benefit would presumably only make up for any lower level of performance in vegetarians before supplementation.

Does Meat-eating Benefit Strength Athletes?

In a message to the list, Andrew Campbell (Australia) argued that a vegetarian diet may actually be less nutritious than an omnivorous diet, because "egg yolk, butter and liver… are a rich source of the fat-soluble vitamins and minerals, including trace elements that bind to the fat molecules". With reference to mountain climbing, an activity that would appear to require both endurance and strength, Campbell suggested that a possible disadvantage of vegetarian diets is the high carbohydrate content, which "will cause problems to mountain climbers who have sensitive insulin balance. Short-chain fatty acids from butter provide energy without creating insulin swings." However, oxygen availability decreases with increasing altitude, so one possible advantage of carbohydrate over fat or protein to mountain climbers is a slightly higher return of energy for each mole of oxygen consumed.

Concern has also been expressed about a possible effect of high intake of phytoestrogens (e.g. isoflavones found in soy) on testosterone in male vegetarians. For example, Weber et al. (2001) found that soy phytoestrogens induced testosterone reduction in male rats. However, according to Kurzer (2002), "…recent studies in men consuming soyfoods or supplements containing 40-70 mg/d of soy isoflavones showed few effects on plasma hormones...” These data do not support concerns about effects on reproductive hormones."

Campbell and two other correspondents (Mathew Jordan from the University of Calgary and Mike Stone of Edinburgh University) were unaware of any vegetarians at the elite level of weightlifting, despite 30 years experience in Stone’s case. No-one on the list offered any information about the prevalence of vegetarianism amongst female vs male strength athletes. Kathryn Russell (address not provided) argued that a perceived dearth of vegetarian weightlifters may not reflect a lack of effectiveness of the vegetarian diet for strength athletes; rather, the cultural/anthropological background of vegetarians may make them unlikely to take up strength sports.

Norrie Williamson (address not provided) argued that, rather than exerting a true anabolic effect, meat consumption may induce a placebo effect. That is, a strength athlete who believes that eating meat improves performance may receive a psychological boost that disappears if a vegetarian diet is adopted. Williamson (and many other subscribers) called for controlled studies on this issue, not more anecdotal evidence. Deborah Shulman suggested that at least 12 weeks would be needed for studies comparing the effects on performance at strength sports of nutrient-rich vegetarian diets with those containing meat.

Mike Stone pointed to evidence that strength-power athletes may need additional protein, which may be "easier" to obtain from animal sources. He also mentioned having seen unpublished data "indicating that testosterone concentration can be influenced by saturated fats in the diet (i.e., meat)". Russell countered by suggesting that if you remove from consideration those meat-eaters who also take dietary supplements, the pool of elite strength athletes might be markedly reduced; that is, the benefit may be coming from the supplements rather than the meat.

David Driscoll (Australia) conducted a brief review of the literature available through a website that provides information for people active in strength training and bodybuilding. This literature pushes the view that low meat/low saturated fat/high vegetable protein (e.g., soy) diets are associated with a marked reduction in testosterone (and, by implication, with reduced strength). Driscoll was not sure of the scientific quality of the information he found, and no-one on the list offered an assessment.

A more authoritative source of information is the paper by Campbell et al. (1999), who conducted a 12-week study to compare the effects of a vegetarian diet with an omnivorous diet on changes in body composition and skeletal muscle size in older men (51-69 y) in response to resistance training. There were substantial benefits for omnivores, who lost 6% fat mass, gained 4% fat-free mass, and increased Type II fiber area by 9% relative to the vegetarians.  A trend towards higher total protein intake (self-reported) in the omnivores might explain the effects, but higher concentration of the anabolic hormone testosterone is more likely. Campbell et al. did not measure testosterone, but Raben et al. (1992) found higher testosterone in young men consuming a high-protein, meat-containing diet compared with those consuming a high-protein, vegetarian diet. If testosterone is involved, a difference in total protein intake per se would not account entirely for Campbell et al.'s findings, because Volek et al. (1997) showed an inverse relationship between protein intake and testosterone concentration.

The discussion on the mailing list went off on a tangent briefly when Bill Proulx claimed that many strength sport competitors are poorly informed about nutrition, while Matthew Jordan and Mike Stone argued that strength athletes, at least at the elite level, are well informed. Scott Naidus (address not provided) pointed out that nutrition is not a mature science, and that nutrient needs are not identical for every population group; in fact they differ even for individuals within each group. The existence of a plethora of dietary supplements with purported ergogenic effects only muddies the waters further. Naidus suggested that sound nutrition for the athlete is a balancing act between prepared foods and supplements vs fresh foods, and that this balance may vary from athlete to athlete.

Human Evolution and Dietary Need

Fabien Basset (Université Laval, Québec) introduced an evolutionary perspective, claiming that our closest relative, the chimpanzee, is largely vegetarian. An anonymous correspondent challenged this claim by reporting that 25 years of close study in the wild indicates that chimpanzees may actually have a preference for meat. However, Deborah Shulman pointed out that gorillas, which are larger and stronger than chimpanzees, are almost exclusively vegetarian.

The relevance of the eating habits of either chimpanzees or gorillas to human performance in strength sports is questionable. As  the anonymous correspondent pointed out, hominids had several million years to evolve physiology and dietary needs different from those of the other great apes, so any parallels in eating habits may be coincidental. In this context, Andrew Campbell argued that the omnivorous diet is apparently the natural state for people: apart from those populations who embrace particular religious practices, no group is known to have deliberately avoided meat in their diet. Citing the impeccable source "educational television", Stephen Seiler (Agder University College, Norway) argued that, far from being essential, foods of plant origin may even be "optional extras". His evidence was a claim that the migrant Mongol people of the Eurasian Steppes "continue to live long, physically active lives on a diet of horse milk, blood and meat. They have never eaten fruit and vegetables, as no respectable Mongolian horseman wishes to be tied to the ground, tending crops." The claims about Mongol horsemen notwithstanding, all but one population of indigenous peoples studied to date have derived much, if not most of their energy from foods of plant origin (Kuhnlein and Turner, 1991). The exception is the Inuit, who nevertheless eagerly sought the few berries and other plant-derived foods that were available in the short Arctic growing period.

Researchers of the so-called paleolithic diet are divided over the importance of meat in providing adequate nutrition to our forebears. Eaton et al. (1997) and Cordain et al. (2000) argued that, in the absence of dairy and grain foods (the major sources of energy in the modern western diet), high meat intake was necessary to obtain adequate total energy. Nestle (1999) and Milton (2000) did not accept that meat intake was high throughout the paleolithic era. However, there appears to be general agreement that meat may always have been a component of the natural diet of Homo sapiens, but the majority of food eaten (at least in terms of total weight) was obtained from plants.

Bill Proulx did not accept the relevance of paleolithic diets to performance in strength sports; proponents of the paleolithic diet argue almost exclusively for its (supposed) health benefits, but health and strength are different issues.  Proulx pointed out that taking steroids, mega-dosing with supplements, and consuming excess protein and fat are all activities that might be associated with improved performance in strength sports, but this will usually be at the expense of health. Proulx summarized his argument by stating that "there is no research supporting the necessity of meat in an athlete's diet and any such opinions are just that, opinions." Campbell’s final comment was in the form of a question to Proulx: "can you cite for me [any] studies showing that elite strength athletes perform just as well on a long term vegetarian diet?"

Conclusions

Some aspects of the discussion appear (at least to me) to have been resolved:

      There are several kinds of vegetarianism.  Each could have a different effect on strength.

      There appears to be a preponderance of meat-eaters among strength athletes at the elite level.  It is unclear whether this preponderance arose from noticeable benefits of meat consumption, a placebo effect of meat consumption, the confounding influence of supplement consumption, or some other cultural effect unrelated to any real benefit to performance.

      The diets of gorillas, chimpanzees and paleolithic humans cannot be relied on to indicate the optimal diet for health and fitness for people generally, or for athletes in strength sports.

      Well-planned vegetarian diets, particularly those including milk and/or eggs, can provide all essential nutrients for good health and for a high level of sports performance. 

      The fact that vegetarian diets are associated with improved health outcomes compared to omnivorous diets does not necessarily imply that vegetarian diets are superior for performance in strength sports or any other strength-dependent activities.

      Indeed, in one recent study of resistance training in older males, omnivores had a bigger gain in muscle mass than vegetarians.

      If meat consumption does enhance strength, the mechanism could be increased testosterone synthesis (possibly through intake of saturated fat) or increased storage of creatine phosphate in muscle.

      More research is required!

References

Campbell WW, Barton ML Jr, Cyr-Campbell D, Davey SL, Beard JL, Parise G, Evans WJ (1999). Effects of an omnivorous diet compared with a lactoovovegetarian diet on resistance-training-induced changes in body composition and skeletal muscle in older men. American Journal of Clinical Nutrition 70, 1032-1039

Cordain L, Brand Miller J, Eaton SB, Mann N, Holt SHA, Speth JD (2000). Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets. American Journal of Clinical Nutrition 71, 682-92

Eaton SB, Eaton SB, Konner, MJ (1997). Paleolithic nutrition revisited: A twelve-year retrospective on its nature and implications. European Journal of Clinical Nutrition 51, 207-216

Eisinger M, Plath M, Jung K, Leitzmann C (1994). Nutrient intake of endurance runners with ovo-lacto-vegetarian diet and regular western diet. Zeitschrift fur Ernahrungswiss 33, 217-229

Hebbelinck M, Clarys P, Malsche A de (1999). Growth, development, and physical fitness of Flemish vegetarian children, adolescents, and young adults. American Journal of Clinical Nutrition 70, 579S-585S

Janelle KC, Barr SI (1995). Nutrient intakes and eating behavior scores of vegetarian and nonvegetarian women. Journal of the American Dietetic Association 95, 180-186

Kuhnlein HV, Turner NJ (1991). Traditional Plant Foods of Canadian Indigenous Peoples: Nutrition, Botany and Use. Philadelphia, PA: Gordon & Breach Science Publishers.

Kurzer MS (2002). Hormonal effects of soy in premenopausal women and men. Journal of Nutrition 132, 570S-573S

Maughan RJ (1995) Creatine supplementation and exercise performance. International Journal of Sports Nutrition 5, S39-S61

Milton K (2000). Hunter-gatherer diets—a different perspective. American Journal of Clinical Nutrition 71, 665-667

Nieman DC (1999). Physical fitness and vegetarian diets: is there a relation? American Journal of Clinical Nutrition 70, 570S-575S

O’Connell JM, Dibley MJ, Wallace B, Mares JS, Yip R (1989). Growth of vegetarian children: the Farm Study. Pediatrics 84, 475-481

Raben A, Kiens B, Richter EA, Rasmussen LB, Svenstrup B, Micic S, Bennett P (1992). Serum sex hormones and endurance performance after a lacto-ovovegetarian and a mixed diet. Medicine & Science in Sports & Exercise 24, 1290-1297

Taytor M, Stanek KL (1989). Anthropometric and dietary assessment of omnivore and lacto-ovo-vegetarian children. Journal of the American Dietetic Association 89, 1661-1663

Volek JS, Kraemer WJ, Bush JA, Incledon T, Boetes M (1997). Testosterone and cortisol in relationship to dietary nutrients and resistance exercise. Journal of Applied Physiology 82, 49-54

Weber KS, Setchell KD, Stocco DM, Lephart ED (2001). Dietary soy-phytoestrogens decrease testosterone levels and prostate weight without altering LH, prostate 5alpha-reductase or testicular steroidogenic acute regulatory peptide levels in adult male Sprague-Dawley rats. Journal of Endocrinology 170, 591-599

Share this post


Link to post
Share on other sites

AMINO ACIDS AND ATHLETIC PERFORMANCE A Mini Conference in Oxford

Andy M Stewart PhD

Scottish Institute of Sports Medicine and Sports Science, University of Strathclyde, Glasgow, G13 1PP, Scotland.

Sportscience 3(2), sportsci.org/jour/9902/ams.html, 1999 (1108 words)

Reviewed by Ron Maughan, Department of Biomedical Sciences, University of Aberdeen, Scotland AB25 2ZD

 

Supplementing with glutamine reduces the risk of infections, and supplementing with branched chain amino acids benefits physical and mental performance in long endurance events, according to presenters at this one-day conference. One speaker argued that creatine supplementation was not ergogenic in competitions. A panel suggested renaming overtraining as the underperformance syndrome, but some members of the audience preferred underrecovery. Reprint · Help

 

KEYWORDS: branched-chain amino acids, creatine, glutamine, overtraining, supplementation.

 

This report is a summary of a one-day conference about supplementing with amino acids, particularly branched chain aminoacids, glutamine, and creatine. The conference was organised by Lindy Castell of the Department of Biochemistry, University of Oxford. Itwas the second sports nutrition conference sponsored by Ajinomoto, a manufacturer of an amino acid supplement called Amino Vital.

For an overview of amino-acid supplementation, see the recent article byKreider (1999) at this site. See also Antonio & Street (1999) for a more detailed review of glutamine supplementation.

Glutamine

The day commenced with Eric Newsholme discussing potential roles of glutamine for cells of the immune system. Glutamine provides nitrogen for the synthesis of nucleotides required in the formation of DNA and RNA during lymphocyte proliferation and macrophage activation. News hold me speculated that the high rate of glutamine oxidation provides precision in the mechanisms that regulate such synthesis. For moderate levels of physical activity the body is able to synthesize sufficient glutamine to meet demands, but in highly active or traumatized people the concentrations of plasma glutamine is lower than normal. He suggested that supplementing with glutamine may be important for reducing the risk of infection. Lindy Castell supported this idea when she presented data showing a decrease in the reported incidence of respiratory infections in athletes givenglutamine (0.1 g per kg body weight) after a marathon. News holme also suggested glutamine supplementation might reduce exercise-induced tissue damage and help recovery from hard training.

Damian Bailey presented a study of the role glutamine might playin infection and acute mountain sickness in athletes exposed to altitude. Twenty-two elite distance runners were randomly assigned either to normal training or to four weeks of living and training at reduced pressure(equivalent to 1640 m). Another 32 physically active males were randomly assigned in a double-blind manner either to normal training or to four weeks of intermittent laboratory-based training while they breathed nitrogen-enriched air equivalent to an altitude of 1640 m. Tests were conducted immediately pre and post intervention. The incidence, duration, and severity of infectious illnesses increased and plasma glutamine concentration decreased only in the athletes living and training at altitude. Greater decreases in plasmaglutamine were evident in the elite athletes. In contrast, plasma glutamine increased after intermittent altitude training, where as there were no changes following normal training. These results suggest that the duration of the hypoxic stimulus has important implications for an individual’s well-being during altitude exposure. Bailey also suggested that the greater the aerobic conditioning the greater the likelihood of infection at altitude, and that symptoms (headache, nausea, sleep disturbance, lethargy) of acute mountain sickness seem to be more prevalent in the more aerobically fit athletes. Preliminary results from a lab-based study suggest that the degree of arterial desaturation may be related to the incidence of acute mountain sickness.

Branched-Chain AminoAcids

Some researchers think that a fall in the plasma concentration of branched-chain amino acids (BCAAs) contributes to fatigue in endurance events (seeBCAAsin Kreider's review for an explanation), but attempts to enhance endurance performance with BCAA supplementation have been inconclusive. Until now, that is. Eva Blom strand presented results indicating a 3-4% enhancement in marathon performance following consumption of a sports drink (PRIPPS Energy-2) containing BCAAs. Blomstrand also showed evidence that cognitive ability at the conclusion of a 30-km cross-country run was improved or maintained following supplementation with the same drink. Suggestive but not strong evidence of long-term benefits of BCAA feeding on racehorses and rugby players was also presented.

Creatine

Jacques Poortmans gave the most controversial talk of the day, with a strong view that creatine supplementation does not work. He admitted that positive benefits were found in laboratory studies, but the suggested that any enhancements in performance observed in the field are due to higher motivation to perform in that environment than in a laboratory setting. He also spoke about the side effects of creatine supplementation. One of the side effects is a gain in bodyweight, which is actually a benefit if it represents a gain in massof muscle protein. He claimed that an increase in body weight was evident in less than half of 29 studies he reviewed, but if he was counting only statistically significant changes in weight, it is possible that most studies showed gains. The extent to which water retention and protein synthesis contribute to the weight gainrequires further research: watch for a paper by Francaux and Poortmans in the European Journal of Applied Physiology. Finally, in his view creatine supplementation does not cause harmful or unpleasant side effects, such as liver problems, muscle cramps, and gastrointestinal disorders.

Overtraining, Under recovery, or Underperformance?

For the final act of the day, an invited panel discussed the overtraining syndrome, then suggested renaming it the underperformance syndrome. The panel objected to the term overtraining, because they didn't like the implied emphasis on too much training as the cause of not performing well. In the ensuing debate, some members of the audience agreed with the proposed new term, while others thought under recovery was a better description.

Do we need a term to encompass poor performance due to factors other than training stress? Yes, in my opinion, but only if there is good evidence that these factors all cause poor performance in the same way. Will we want to replace overtraining with this term? Not if we want to talk about poor performance due to too much training. Whether under recovery is a better way to describe such poor performance and whether the term will catch on remains to be seen.

Thanks to Lindy Castell for valuable comments during the preparation of this report.

References

Antonio J, Street C (1999). Glutamine: a potentially useful supplement for athletes. Canadian Journal of Applied Physiology 24,1-14

Kreider RB (1999). Effects of protein and amino-acid supplementation on athletic performance. Sport science 3(1),sportsci.org/jour/9901/rbk.html(5579 words)

Share this post


Link to post
Share on other sites

Всем добрый день, очень интересная информация про бег и просто передвижение босиком, сказано про джоггинг. В этом материале сказано как организм ощущает движение и реагирует, особенно описано движение человека по поверхности.

Очень интересная, занимательная и полезная информация, ля всех кто любит бегать и выбирает обувь для бега.

смотрите ссылку на файл

 

http://www.shubawa.se/barefoot.pdf

Share this post


Link to post
Share on other sites

ГИПОКСАНТИН КАК ПРЕДСКАЗАТЕЛЬ ВОЗМОЖНОСТЕЙ ХОРОШО ТРЕНИРОВАННЫХ АТЛЕТОВ

 

Исследователи тратят немало сил на изучение биохимических процессов, сопутствующих спортивным нагрузкам. Одно из возможных применений получаемых знаний – способность предвидеть будущие результаты спортсмена на основе динамики его биохимических процессов, чтобы соответственно корректировать тренировочный план и даже график участия в соревнованиях.

Очередной шаг в этом направлении сделали специалисты университетов города Познань (Польша). Данная публикация основана на результатах их работы, которые смело можно характеризовать как ценные и многообещающие.

В настоящее время для оценки физических кондиций спортсмена используется комплекс параметров, включающий в себя интенсивность газообмена (максимальный и пороговый уровень потребления кислорода) и концентрацию молочной кислоты в крови. Довольных этой методикой немного, что и неудивительно, так как публикуемые данные убедительно доказывают, что дать точную оценку она может лишь по счастливой случайности.

Между тем, известно, что интенсивность и длительность нагрузок прямо коррелируют с динамикой метаболизма пуриновых нуклеотидов, что можно легко проконтролировать, измеряя концентрацию в плазме крови гипоксантина. Это вещество может служить надежным маркером деградации аденин-нуклеотидов (АТФ, АДФ и АМФ) в мышцах, то есть уровня энергетического стресса, причем как после коротких нагрузок в виде спринта, так и после бега на длинные дистанции. Как отмечают авторы в дискуссионной части, это неудивительно, поскольку как спринт, так и долгий бег требуют от организма не только аэробных, но и анаэробных усилий, разница только в пропорциях.

Далее, после некоторого периода (6-7 недель) тренировок наблюдается уменьшение выделения пуринов из мышечных тканей в плазму, в результате чего возрастание концентрации в ней гипоксантина уменьшается, зато увеличивается активность фермента гипоксантин-гуанинфосфорибозилтрансферазы, ответственного за пуриновый обмен. По этому уровню можно судить о степени адаптации атлета к нагрузкам. Можно ли с помощью этого показателя оценить возможности спортсмена в предстоящих состязаниях?

Помочь дать ответ на этот вопрос вызвались 4 группы хорошо тренированных спортсменов-мужчин с разной специализацией. В первой группе было 28 триатлонистов, три остальные группы составили бегуны на различные дистанции: 12 человек, соревнующихся в беге на 5000-10000 метров, 13 бегунов на 800-1500 метров и 18 спринтеров. Все они принимали активное участие в состязаниях на национальном и международном уровнях.

После изучения годового плана каждого был определен момент перехода от подготовительно-тренировочной к соревновательной фазе и в этой временной точке проведен лабораторный тест. Перед и после тестовых нагрузок на беговой дорожке до волевого истощения были взяты пробы капиллярной (из кончика пальцев) и венозной (из локтевой вены) пробы крови, также в ходе нагрузок определялись газодинамические параметры. Капиллярные пробы дали информацию о концентрации молочной кислоты, по венозным пробам определяли уровни гипоксантина, ксантина, мочевой кислоты и гипоксантин-гуанинфосфорибозилтрансферазы. Степень подготовки затем была оценена по показанным в ходе состязаний результатам в сравнении с личными рекордами.

Гипоксантин оказался надежным (r2 = 0,89-0,94) предсказателем времени прохождения соревновательной дистанции. Остальные параметры, в том числе газодинамические и уровень лактата, показали очень слабое или полное отсутствие корреляции (r2 = 0,31-0,51). Однако сочетания результатов анализа пуриновых метаболитов и кардиореспираторных параметров и лактата с использованием математической модели еще больше улучшило прогноз соревновательного времени, доведя его почти до совершенства (r2 = 0,93-0,96). И самое приятное — то, что гипоксантин выполняет свои функции одинаково хорошо вне зависимости от спортивной специализации. Формула, по которой осуществлялся расчет, относительно проста:

RT = 107,88 + 1,73 × (Hxexerc) – 0,22 × (VO2max ) + 0,63 × (LAexerc)

, где
RT – предсказанное соревновательное время (мин); 
Hxexerc - концентрация гипоксантина в плазме крови спустя 5 мин после теста (мкмоль/л); 
VO2max - максимальное потребление кислорода (мл/кг/мин);
LAexerc - концентрация лактата в капиллярной крови спустя 3 мин после теста (ммоль/л).

Эти результаты выглядят, казалось бы, логичными, но для авторов публикации они были несколько неожиданными. Дело в том, что подобное исследование уже было предпринято ранее, и в нем не удалось обнаружить такую взаимосвязь. Пытаясь объяснить этот парадокс, авторы обращают внимание на то, что в предыдущем исследовании аудитория состояла только из женщин, пробы крови брались на других временных отметках (5 минут после упражнений здесь против 20 минут после нагрузок в предыдущей работе). А самое главное - концентрация гипоксантина в крови перед нагрузками в той работе была в 2,1-2,8 раза выше. Это могло произойти либо из-за различий в биохимических процессов у женщин и мужчин, либо просто потому, что женщины были не тренированы.

К сожалению, моногендерная аудитория стала слабостью настоящей работы, авторы напоминают, что их выводы относятся только к хорошо тренированным мужчинам. Более широкое исследование, включающее лиц обеих полов, разной степени тренированности, с несколькими экспериментальными сессиями и большим количеством проб в разные временные отрезки, позволит уточнить опубликованные выводы и, возможно, найти еще более универсальный маркер-предсказатель.

Ключевые слова: бег, биохимия, триатлон, функциональное тестирование

25 Дек 2013 г.

Источник

  • Zieliński J, Krasińska B, Kusy K. Hypoxanthine as a predictor of performance in highly trained athletes. Int J Sports Med2013, vol.34, N.12, pp.1079-1086.

Share this post


Link to post
Share on other sites

КРЕАТИН ОПАСЕН ДЛЯ МОЛОДОГО ОРГАНИЗМА

 

 

Исследователю, выдававшего себя за 15-летнего футболиста, который якобы хочет увеличить мышечную массу и силу, часто советовали принимать креатин, противопоказанный для подростков из-за относительно негативных последствий (в том числе для почек и печени), с увеличением риска по мере увеличения дозы. Креатин является природным соединением, задействованным в производстве энергии в организме.

 

Выдавая себя за 15-летнего спортсмена, желающего увеличить размер мышц при помощи силовых тренировок, исследователь обзвонил более 200 магазинов спортивного питания и спросил, может ли он принимать добавки, содержащие креатин. Несмотря на противопоказания к использованию креатина в возрасте до 18 лет Американской академии педиатрии (AAP) и Американского колледжа спортивной медицины, более чем две трети продавцов ответили утвердительно.

Исследование, которое будет представлено на Национальной конференции Американской академии педиатрии и выставке в Вашингтоне округа Колумбия, было проведено студентами программы бакалавриата, принявшими участие в летней программе клинических исследований в медицинском центре Коэн для детей в Нью-Йорке в 2014 году.

Главный исследователь Магуайр Херримен обзвонил по телефону в общей сложности 244 сетей и отдельных магазинов спортивного питания, зачитывая заранее подготовленный текст, который начинался так:

«Здравствуйте, меня зовут Марк и я являюсь 15-летним старшеклассником средней школы. Я занимаюсь футболом и выполняю силовые упражнения перед началом сезона. Есть ли у вас какие-либо добавки, которые вы могли бы порекомендовать?» Если продавец не рекомендовал креатин, то исследователь говорил, что другие игроки по команде сказали ему, что креатин им очень помог, и спрашивал, могут ли они рекомендовать эту добавку. Он также спрашивал, может ли он купить креатин сам, или необходимо присутствие взрослых.

Среди выводов исследования:

67,2 % продавцов рекомендовали креатин для 15-летнего спортсмена мужского пола.

38,5 % рекомендовали креатин без наводящего вопроса.

28,7 % рекомендовали креатин после наводящего вопроса.

Продавцы мужчины чаще, чем женщины рекомендовали креатин без наводящего вопроса .

74% продавцов сказали, что 15-летний подросток может приобрести креатин без присутствия родителей.

Не было никакой разницы в рекомендациях в зависимости от региона.

Старший исследователь Рут Миланиак, говорит, что результаты исследования имеют значение не только в отношении подростков, стремящихся нарастить мышечную массу. «Мода на красивое накаченное тело распространяется на все возрастные и гендерные группы. Сотрудники магазинов, которые продают добавки, должны быть осведомлены о безопасности использования добавок среди несовершеннолетних», - говорит она. Кроме того, по ее словам, клиенты всех возрастов должны быть информированы об опасности добавок, приводящих к уменьшению веса и формированию рельефных мышц.

«Если спортивные магазины рекомендуют подросткам добавки, которые не только имеют побочные эффекты и вредны для их развивающегося организма, но и имеют четкое указание на упаковке «не употреблять до 18 лет», они подвергают их огромному риску» - сказала доктор Миланиак.

Главный исследователь Херриман говорит, что родители и педиатры должны обязательно поговорить с подростками о безопасном использовании добавок. «Необходимо разработать более строгие руководящие принципы для продажи добавок несовершеннолетним», - сказал он. «Так как продажа добавок не контролируется Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов и они отпускаются без рецепта, мы можем недооценивать степень возможного риска.»

Ключевые слова: питание спортсменов, рекомендации, спортивное питание

26 Янв 2016 г.

Источники

 
  • Upvote 1

Share this post


Link to post
Share on other sites

Статья будет полезна всем кто хочет и занимается единоборствами MMA, в статье очень интересно обьясняется в каком режиме надо проводить тренировки которые будут полезны для бойцов этого вида. За пояснениями можете спрашивать прямо  в этой теме.

УДАЧИ.

 

 

Conditioning for MMA and Combative Sports – How to Not Gas Out!

by Matt Jordan on May 20, 2012 , 3 comments

I am a big fan of combative sports, and I have always taken a special interest in training fighters.

Recently, I was asked some specific questions on how I train one of my athletes.  I think they were hoping to hear about some flashy out-of-this-world exercise or a unique training device that had never been seen in the fitness world.

Unfortunately I have nothing to share in this department because generally speaking I stick to the basics.  I am a firm believer in trying to affect the physiology of the athlete, and I do not attempt to mimic what I see happening in the sport.

I let the sport take care of the specificity and I try to improve the physiology whether that be maximal strength, maximal muscular power, elastic (reactive) strength, structural tolerance and motor ability, the power of the anaerobic glycolytic system, maximal oxygen consumption (VO2 Max), or the maximal power of the aerobic system.

– If an athlete needs maximal strength development we squat heavy weights for less than 5 reps

– If an athlete needs maximal muscular power we lift moderately heavy weights very explosively

– If an athlete needs elastic strength we bound and jump

– If an athlete needs structural tolerance we link with a good therapist and focus on mobilizing areas of restriction and activating sluggish muscle groups

– If an athlete needs to develop the anaerobic glycolytic system (20-90s) we do high intensity intervals

But what if an athlete needs to develop the power of the aerobic system? Then what?

Well the personal trainer in your local gym is going to tell you that if you blast off a high intensity circuit focused on full body strength exercises you will develop your “cardio”.

If you read an issue of the most popular fitness magazine they will tell you to NOT do long aerobic capacity training because it will decrease your muscle mass and increase muscle catabolism. (By the way, this is a total fallacy – I can promise you this. I have tons of athletes who do lots and lots of aerobic training combined with the right type of strength training and put on lots of muscle).

If they saw the world of human performance through my eyes they would start by asking “how do I best affect an athlete’s physiology?”.

If they scoured the scientific literature and interviewed the world’s best coaches the answer to this question would be: “Focus on the basics and focus on training strategies that work – don’t worry about bells and whistles like breathing through a straw or buying a $10,000 tent – focus on basic training methods that are hard, effective, and proven in sports that demand this form of energy production”.

As I mentioned above, I’m all about the basics.  My belief in the basics is rock solid but this weekend, after spending time with the Canadian National Cross Country Ski Team,  the rock solid foundation just got reinforced.

My day on Friday started out with a skate ski in Mount Bachelor.  As I was stumbling around the 5 km loop I realized that the metrics a strength coach uses to judge his athletes is so myopic.  These skiers are in incredible shape and their sport demands muscular power, maximal strength, and extreme cardiovascular power and capacity.

They are phenomenal athletes who do more in a single training day than many of us will do in 10-days.  They have power.  They have strength. But most impressively they can absolutely haul ass anywhere for anywhere from 3 to 30 minutes.  It’s actually incredible.

At the start of this blog I mentioned that I was asked how I approached the training program design for a combative athlete.

If we take boxing, athletes fight 10-12 x 3 minute rounds with 1 minute rest.  An MMA fighter fights anywhere from 3×5 minute rounds with 1 minute rest up to 5×5 minute rounds with 1 minute rest.

Let me tell you that the 1 minute rest is doing nothing for your physiological recovery.  If you are gassed after 5 minutes, I can promise you that at 6 minutes you will still be gassed – it’s merely enough time to get the blood wiped off your face and to have a sip of water.

If you are doing the math you are probably saying: “How can a combative athlete produce as much power as possible over 15 to 36 minutes so that the first round’s power output is the same as the 5th round?”

When I say power output I’m referring to the power of the aerobic energy system.  I’m not talking about maximal muscular power (e.g. a maximum power clean or vertical jump).

I’m also not talking about the anaerobic energy system because no matter how hard you train, this energy system is limited.  If you’re blood lactate goes above 10 mmol it doesn’t matter how fit you are you will fatigue.  The key is producing big power outputs but also being able to keep your blood lactate levels to a minimum.

When I approach this problem I look to sports where the cardiovascular demands are similar.  What parallels 15 to 36 minutes of continuous high intensity full body cardiovascular energy production?  I’m sure there are a few answers to this question but a standout in my mind is cross country skiing.

As luck should have it, I happened to run into one of the world’s top cross country ski coaches this weekend in Bend, Oregon.  His name is Tor Bjorn.  He’s coached Olympic Medalists in cross country skiing, and he has an impressive pedigree in high performance sport.

And there’s one more thing… he’s a huge MMA and combative sport fan.

After we finished our ski session I started picking his brain on how he improves an athlete’s power output for a 5 to 25 minute event.  The reason I asked him this question is that he is an expert in this department, and he had surprising insights into what he thought a fighter should do.

I just need to remind you that the Norwegians are powerhouses in the sport of cross country skiing, and the approach of top coaches like Tor Bjorn are all about affecting the athlete’s physiology.  Improving VO2 Max is critical, and interval sessions focused on the power of the aerobic system are the cornerstone of the training program.

Contrary to interval sessions that are typically seen in the fitness world, which are very very intense and involve substantial strength endurance, these sessions are carefully prescribed, and are carefully progressed within and between training sessions.

In fact, as I sat and watched Tor coach an interval session I suddenly realized how much detail was going into every aspect of the session.  I always thought I was particular and specific about how an athlete was to perform an interval session.  I am very strict on ensuring the intervals are done according to plan.  However, Tor took this to a completely different level.

This interval session had so many layers.  There was a psychological layer, a competition specific layer but at the heart of the session was the physiological layer.

According to Tor each properly performed interval session offers the potential of a modest 0.25 ml/kg/min improvement in VO2 Max. Using this scientific estimation it could be said that 12-15 interval sessions are required to result in a noticeable improvement in VO2 Max.  Done at a frequency of 2x/week, this means a training block has to last somewhere between 8-20 weeks.

As we discussed the training methods that are often shown in TV documentaries he quietly scoffed at what he has seen.  He has heard the claims about altitude training, high intensity intervals and all sorts of other methods, and what he observes are athletes who still gas out too quickly.

Why does this happen? Well in Tor Bjorn’s world, the athletes lack one critical ingredient: power in the aerobic energy system.

His formula for training an MMA fighter would be quite simple:

1. Improve efficiency and technical ability.  This means it doesn’t cost you a ridiculous amount of energy to do your sport – so, plan specific sessions that really tax your ability to be efficient.

2. Improve maximal muscular power and maximal muscular strength. By improving these qualities you give yourself another gear, and this in and of itself improves efficiency.  It’s obvious as well that most combative athletes would benefit greatly from being strong and powerful.

3. Improve VO2 Max.

Improving VO2 Max is a key in his mind to making sure you have the gas tank to last 15-25 minutes.  Without a huge VO2 Max you are starting a fight 20 meters behind your competition, assuming your competition has trained properly.

As our day wrapped up in Bend, Oregon I felt as though my approach to sticking to the basics had been validated.

However, the key message is that the basics need to be done properly.  You can’t get the program 80% or even 95% right.  It has to be done 100% correctly each time for the benefits to be gained.  Skipping out will result in sub par results.

As far as I see it, the basics rule the training world…. you just need to make sure the basics are done perfectly.

Edited by Aktovegin

Share this post


Link to post
Share on other sites

Recovery in Team Sports  Lessons Learnt In The Southern Hemisphere

Сегодня попалась статья, проитал польностью и подумал опубликовать. В статье реально показаны основные моменты как надо готовить спортсменов перед игрой в плане питания, как восстанавливать сразу после игры, даны ценные указания по всевозможным подходам восстановления после интенсивных нагрозок.

Recovery in Team Sports Lessons Learnt In The Southern Hemisphere.docx

Share this post


Link to post
Share on other sites

CLASSIFYING SPRINT TRAINING METHODS

 

This document is adapted from the article series Redefining Speed’, originally published in Athletics Weekly (www.athletics-weekly.com) and authored by:

 

Michael Khmel - (National Event Coach Mens Sprints and Relays) Tony Lester - (National Event Coach Womens Sprints and Relays)

 

Edited by Tom Crick for uCoach

 

 

 

Although opinions vary with respect to the best way to improve sprinting performance, it is universally accepted that if you want to be a good sprinter you had better include some form of running in your training programme! The interesting thing about running is that it is a very flexible training modality. There are literally hundreds of different ways you can vary the parameters involved to improve various performance characteristics. It is amazing that something so simple and natural can at the same time become so complex.

 

From a coaching perspective it is important to be able to label and classify sessions so you can track your athlete’s progress as they develop.

 

Running methods can be classified with respect to the primary energy system used to fuel the reps. Therefore, methods can be describe as being alactic (meaning it does not create lactate ), anaerobic (meaning they do create lactate) or aerobic in nature.

 

While the alactic, anaerobic and aerobic systems are all working all of the time, the type of fuel primarily used by the body during a running session is dependant on a number of factor, the most important being the rate at which fuel is needed, which is primarily dictated by the intensity and duration of the run and also the rest between reps.

 

 

PART 1: INITIAL CONSIDERATIONS

 

 

 

Intensity VS Effort

 

The term ‘intensity is one of the most misused in speed training because it is often confused with perceived effort’. Intensity relates to the power output (in this case the speed) of the athlete (something that can be objectively measured), whereas perceived effort refers to an individual’s perception of the how hard they are working or the level of discomfort during or immediately after exercise (which can only be subjectively measured). To ensure training methods are described objectively it is essential that intensity and not effort is used to distinguish between various types of work.

 

Intensity can be evaluated relative to absolute levels and also relative to the individual athlete’s capabilities. Absolute intensity describes intensity in relation to absolute human performance. For example a time of 10.00s over the 100m represents a performance at a higher absolute

 

 

 

intensity than a time of 12.00s. In sprinting, absolute intensity is also linked to the velocity reached during the race so by default 100m races tend to be of a higher absolute intensity than 400m races because the top speed reached will be higher. Remember even though the 400m is a harder event in terms of effort the absolute intensity is lower and this is an important concept to get to grips with.

 

Relative intensity’, on the other hand, relates to the individual’s personal best or current potential maximum performance. Under these conditions an athletes current season or personal best is considered 100% relative intensity. Hence, when an athlete capable of running ten seconds for the 100m takes twenty seconds to cover the same distance the run was performed at 50% intensity.

 

An easy way to calculate the relative intensity of a run is to divide the athletes 100% performance by the percentage you want them to be running at. So 90% (0.90) intensity for an 11.00s runner will be 11/0.90 = 12.22s, 80% (0.8) will be 11/0.8 = 13.75 and so on.

 

 

The Effect of Intensity on Recovery

 

Intensity has a significant impact upon recovery. The higher the intensity of the run the longer the time required to fully recover both between runs and between sessions. The time taken for an athlete to achieve full recovery between training runs is highly individual and may vary from 3 to 45 minutes depending on the absolute intensity reached. In the sprints, as a practical guide, a coach can gauge when an athlete is fully recovered if the next run can be performed in the same or faster time and with the same level of perceived effort. If the athlete is unable to reproduce the previous performance then the rest generally needs to be extended.

 

Since, total relaxation is a prerequisite for high absolute intensities (fast times), high intensity runs will have a low perceived effort by definition (think of Usain Bolt’s World Record run at the Beijing Olympics as an example). However, just because high intensity efforts look easy the coach should not underestimate their impact upon the athlete. Observation by the coaches of several world record holders in the 100m suggest it can take up to two weeks for an athlete to fully recover from such a feat.

 

Unlike other forms of training the effect of high intensity work is not immediately apparent but instead is delayed, sometimes by several days in a similar fashion to the way DOMs (Delayed Onset Muscle Soreness) kicks in a day or more after the exercise that stimulated it.

 

The fatigue that occurs as a result of high intensity work cannot be attributed to the build up of lactate, hydrogen ions or other metabolites, due to the fact that very short high intensity workloads seem to induce it. Instead it is hypothesised to be the result of the loss of the fine co- ordination required to recruit large numbers of muscle fibres simultaneously and in the desired order. Therefore, it is often described as neural’ or Central Nervous System (CNS) fatigue. CNS fatigue is not always noticeable during normal everyday activities but instead manifests itself during high intensity exercise, where it results in a reduction in performance. Empirical evidence suggests that the fatigue that accompanies high intensity sprint work takes at least 48 hours to diminish. Therefore, a coach should think long and hard before scheduling high intensity sessions on consecutive days.

 

 

 

 

As previously covered in our discussion of the effect and intensity on fine motor skills, as intensity varies so too do the biomechanics of running. In respect to absolute intensity, the biomechanics of an athlete running a world record in the 100m (high power output) are quite different to those of an athlete running a world record in the marathon (lower but sustained power output). Furthermore, as an individual shifts between runs at varying relative intensities their biomechanics will also change. For example there is considerably more variation in vertical displacement of the athlete’s centre of mass during runs at lower intensities. Looking back at the Beijing Olympics Usain Bolt’s biomechanics were very different during his first round run of 10.20 when compared to his blistering world record final.

 

Motor learning research tells us that for positive reinforcement of the technique to occur, the biomechanics used in practice must closely resemble those used in competition. Therefore, to improve the timing of the muscle firing patterns (inter-muscular co-ordination) experienced during competition a sprinter must practice running at close to race pace or 100% relative intensity over the desired distance.

 

Research and empirical evidence suggests than when an athlete drops below 95% relative intensity there is little positive reinforcement of race specific mechanics. Using the calculation explained earlier, this suggest that an athlete aiming to run 100m in 11.00s would need to run at least 11.60s to gain positive effects in terms refining the specific mechanics required to push their performance below 11s. However, if you are to spend time training at high intensity you must make sure you respect the increased recovery requirements and the principle of perfect practice such work brings with it. In short, you cannot run fast all the time and expect improved performance without injury. Instead you must be selective about your use of such work but this is a topic better addressed in conjunction with discussion on the organisation of training.

 

 

PART 2: THE CLASSIFICATION OF TRAINING METHODS

 

Over the years sprint coaches have developed a special vocabulary to describe the characteristics of runs of varying durations and intensities. The terms used in this article are found predominantly in literature from the soviet sporting nations. Although not universally implemented by all coaches the following descriptions provide a good terminological basis from which to discuss sprint training and will form the basis of definitions used in the UKA Coaching Qualifications. They have also been specifically chosen to align with definitions used in the UKA Exercise Classification Hierarchy and other areas of the training literature specifically that surrounding strength training.

 

Due to the link between biomechanics and intensity, work in the intensity zone of 95-100% plays a significant role in a sprinter’s programs. Work of this intensity bracket is collectively referred to as high intensity and can be sub classified as Speed, Speed Endurance, Specific Endurance and Special Endurance. For sprinters competing in distances from 60-400m this high intensity work is classified under Competitive Exercises in the UKA Exercise Classification Hierarchy.

 

 

 

For more details see the Exercise Classification Hierarchy Document and Podcast on uCoach:

 

>   http://coaching.uka.org.uk/document/uka-exercise-classification-hierarchy-v1.0-document/

>   http://coaching.uka.org.uk/audio/exercise-classification-hierarchy-podcast/

 

 

Competitive Exercises: High Intensity Training

 

The UKA Exercise Classification Hierarchy (ECH), was developed to help coaches to organise their training by placing all activities into one of four categories depending on the degree to which an exercise transfers to the event being trained for.

 

Within the ECH, the term Competitive Exercises (CE) refers to exercises they are almost identical to what happens in a race in terms of the mechanics that are used to execute them. In sprinting the CE category includes all the forms of sprinting that take place at near maximal intensity e.g. Speed, Speed Endurance, Specific Endurance and Special Endurance work.

 

 

SPEED WORK

 

The term Speed work describes runs of near maximal intensity (95-100%) carried out under alactic conditions, that is under conditions where lactic acid levels in the muscles are minimal and ATP-CP (also known as the phosphagen system) is the key energy system being utilised to power activity. As a rule of thumb, runs of near maximal intensity will remain alactic if they do not exceed around seven seconds in duration and if full recovery is permitted between consecutive runs. To ensure the athlete learns to run with perfect technique, when perceived effort increases a speed session should be ended or poor practice will be reinforced.

 

When considering what is and what isn’t speed work for your athlete, it is important to note that an athletes performance level plays a big part in determining what can be achieved via alactic means. Highly qualified (e.g. international) athletes will be able to run further before the run stops being alactic and consequently can use longer distances than novices. However, the higher absolute intensity will require them to take longer rest breaks between runs if they wish to reproduce their previous performance (because they have activated more muscle mass to achieve the higher performance).

 

 

Defining Full Recovery

 

For the record, ‘full recovery in the context of inter rep or set rest means a rest interval that is long enough for the athlete to be capable of performing the next repetition in the same time or faster than the last. While research shows that ATP-CP is fully restored by the body in around three minutes common sense tells us that an athlete is not necessarily fully recovered from a seven second effort (say a 60m race) in three minutes, so the coach must exercise their best judgement as to what is an appropriate ‘full recovery for a run of a given distance at high intensity. As a rule of thumb, for every second spent sprinting the athlete should rest one to two minutes in order to fully recover. So a five second effort will usually requires between five to ten minutes rest. Within this range, ten minutes would be more appropriate for elite athletes, while younger developing athletes may be able to use less than five.

 

 

 

 

 

Types of Speed Work

 

Since speed work encompasses alactic high intensity activity it incorporates both technical work for acceleration and for maximum velocity mechanics. Hence, there are essentially three kinds of sessions that fall under the speed category:

 

      Short acceleration runs (acceleration focus)

      Flying runs (maximum velocity focus)

      Runs from a stationary start over varying distances where the total duration of the run is 7s or less (race modelling focus where the aim is to practice the first part of the event)

 

The aim of work of this nature is to perfect acceleration and top speed mechanics while expanding an athletes ability to perform work under alactic conditions (that is work predominantly fuelled by ATP-CP).

 

This last point about expanding an athlete’s alactic capacity is an important concept in the sprints. Most coaches are familiar with the idea of improving an athlete’s anaerobic capacity and ability to deal with the build up of lactic acid within the muscles, often described as developing an athletes ‘lactic tolerance. Lactic tolerance is easy for a coach to assess because you can see a huge difference between an athlete that is used to lactic work compared to those who are not. The key changes after training for ‘lactic tolerance will be a longer time until the athlete is severely affected by the accumulation of lactic and reduced perceived effort during anaerobic training sessions. The same concept also applies to the development of alactic capacity’, where an athlete who is used to speed work will find they can do more volume of speed work before the effects of lactic begin to be felt (and the session has to be drawn to a close) and also will have less perceived effort during short duration runs only that now the changes are more subtle.

 

While for the purposes of definition we suggest that runs will cease to be alactic after seven seconds, in reality there is variation between individuals and for a beginner athlete the changes may in fact begin at six seconds. If through training over several years we were then able to shift this alactic window from 6 to 7.5 seconds that would represent a huge performance improvement over the 100m because they can now run for 1.5 seconds longer before they ever experience any perception of lactic acid and the event barely lasts more than ten seconds for mature adult competitors.

 

 

 

 

 

Speed Work: Acceleration Focus

 

Speed work that focuses on acceleration is usually performed from blocks, crouched, three point or a standing start and aims to reproduce the acceleration mechanics used in a race. The distances used will vary depending on the level of the athlete as young athletes reach lower top speeds and hence finish accelerating earlier than adults. So whereas an acceleration focus for Usain Bolt may be 40-50m, for a young athlete it may only be 10-20m. Full recovery is required between each run, so that the athlete is able to perform each repetition without a drop off in performance. Again, this will mean longer recoveries are required for more qualified athletes who are reaching higher absolute intensities than for younger developmental athletes. Therefore, rest intervals can vary from perhaps 1-2 min for youngsters to as much as 7 minutes for mature elite competitors.

 

So for a young athlete a typical acceleration session might be runs over 20m from a crouched start with two minutes rest between each repetition. For an elite athlete they may be sprints over 40m from blocks with a seven minute rest break.

 

 

 

Speed Work: Maximum Velocity

 

When maximum velocity is the focus, the key is to reach as high a velocity as possible and then continue the run for only as long as velocity does not decrease. Biomechanically the emphasis is on high speed upright running mechanics. Maximum velocity runs will often be performed from a rolling (jog in) start. Such a method reduces the rate of acceleration but may also allow an athlete to reach either a higher maximum velocity or the same velocity as from a stand but using less energy. The run up distance is dependant upon the distance an athlete needs to achieve their highest speeds, so for youngsters this distance will be less than for elite adults. Having finished accelerating athletes can hold their top speed for only around 10-30m. Again, younger athletes can hold top speed for much shorter distances than elite adults and so this distance will probably be only around 10m for developing athletes while for adult elite athletes this may be up to 30m.

 

So for a young athlete a typical maximum velocity session might use a build up of 20m from a rolling start followed by 10m flying run between two cones. Because the top speed is fairly low the rest between runs may be only four minutes. In comparison an elite competitor might use a 40m build up into a 30m flying zone. Because the speeds reached may be in excess of 12m/s the rest interval may need to be as long as 15 minutes before they can reproduce the performance again.

 

 

Speed Work: Race Modelling

 

Finally, a race modelling run will try and simulate the initial segments of a sprint race. Therefore, the emphasis is on perfect reproduction of acceleration mechanics (be that from a stand, blocks or 3 point start), smoothly blended into upright high speed running. The distances used will be longer for more qualified athletes but the total duration of the runs should always be less than 7 seconds. Because both acceleration and max velocity are almost maximal the rest required between runs will need to be higher than for acceleration or maximum velocity sessions alone.

 

Therefore, for a young athlete a typical session might be runs over 40m from a crouched start with 4-5 minutes rest between runs. For an elite competitor it might be runs over 60m with maybe up to 15-20 minutes between repetitions!

 

So there it is in theory but what does this look like in practice? Below are some sessions taken from our training with elite level athletes.

 

Acceleration Focus:

Khmel Acceleration Sessions:

      From Blocks: 4x10m, 4x20m, 3x30m

      From Blocks: 6x40m

 

Max Velocity Focus:

Khmel Max Velocity Sessions:

      2x (2x [30m build up 30m fly])

Harry Aikines-Aryeetey will typically run 2.75s for 30m through timing gates.

 

 

 

      [50m build up fly 10m], [40m build up fly 20m], 3x (3x [20m build up 20m fly])

 

Lester Max Velocity Session:

      Rep 1: [20m build up fly 30m] Rep 2: [Accelerate 20m fly 30m]

Rep 3: [Accelerate 20m and float 30m] Rep 4: [Accelerate 20m fly 30m]

 

 

 

Race Model Focus:

Khmel Race Model Sessions:

      From 3 point: 4x50m relay exchanges receiving the baton

      From blocks: 4x60m

 

 

Summary for SPEED WORK

 

Intensity                                                                       95-100% (HIGH)

Rep Duration                                                              Less than 7s

Recovery between runs                                             FULL (1-2min per second of activity)

Recovery time until next high intensity session      48 hours +

 

 

SPEED ENDURANCE

 

While it is important that an athlete improves their acceleration and maximum velocity, every sprint lasting more than 7s requires the capacity to endure the speed achieved by alactic  means. Note that in the discussion we will use velocity and speed interchangeably although they are technically different.

 

High intensity runs (95-100% relative intensity) that last longer than around seven seconds rely on anaerobic metabolism to maintain muscular contraction and this leads to the build up of lactic acid within the muscles. Assuming acceleration is maximal, by the time seven seconds has past the vast majority of athletes will have finished accelerating and reached their top speed. From here on out the aim of the game is to maintain this speed for as long as possible. The term Speed Endurance has been coined for work aimed at improving this quality and is typified by runs lasting between seven and fifteen seconds at 95-100% intensity, where full recovery is used between reps and sets.

 

In order for an athlete to train speed endurance they must first get very close to their maximum possible velocity and then maintain this for a period of time without a significant drop off in speed. The key difference between speed and speed endurance work is that during speed endurance sessions the athlete’s anaerobic metabolism is challenged. Like speed work, full recovery should be taken between sets and reps and the time required for an athlete to achieve full recovery will typically be one to two minutes per second of sprinting. Once again, longer rest breaks will be required for athletes of a high performance standard than those just starting out.

 

 

 

 

Because athletes of different standards are capable of running different distances in 15s the distances used for speed endurance sessions will vary from athlete to athlete. For youngsters 100m may be the furthest distance used for speed endurance work while, for Usain Bolt 160m may fall within the 15s range!

 

With this in mind examples of speed endurance sessions for young athletes performed close 100% intensity might be:

 

      4x50m with 5min rest between runs

      60m [6min rest] 80m [8min rest] 100m

      2x100m with 10min rest between runs

 

For an elite performer these sessions could be adjusted to be:

 

      4x80m with 10min rest between runs

      80m [10min rest] 100m [15min rest] 120m

      2x150m with 15-20min rest between runs

 

The number of reps for this type of work is determined by the ability of the athlete to minimise drop off in terms of top speed. With reps lasting around 15s, where each rep is performed at close to 100%, an athlete may only ever be able to perform 2-3 reps before the intensity drops below 95% or perceived effort is such that they are unable to produce a relaxed sprinting action. As with any complex co-ordination task once fatigue sets in, and perceived effort increases, the session should be brought to a close to ensure the athlete does not practice poor technique.

 

 

 

 

If the session is continued once intensity drops below 95% or technique breaks down then the quality being trained is no longer speed endurance but another category of work, (usually intensive tempo) which we will discuss later.

 

While the volumes shown in the above sessions are fairly low, for sessions where runs are performed at 95% intensity the total session volume can be a lot higher because each rep is slower and less fatiguing. Remember while 95% sounds fast it is a lot less fatiguing than 100%.

 

Real life example sessions we have conducted with our elite athletes include:

 

Khmel Speed Endurance Sessions:

      4x150m rest 12-15 minutes in 15-15.80s

      6x120m rest 6 minutes (accelerate 40m, float 40m, 40 pick up) 12.70-13.30s

 

Lester Speed Endurance Session:

      2x (120m in 12.50s rest 8 minutes, 80m rest 8 minutes, 60m in 6.50s rest 12-15 minutes)

 

 

 

 

Summary for SPEED ENDURANCE

 

Intensity                                                                       95-100% (HIGH)

Rep Duration                                                              7-15s

Recovery between runs                                             FULL (1-2min per second of activity)

Recovery time until next high intensity session      48 hours +

 

 

 

SPECIFIC ENDURANCE

 

It is almost impossible to prevent a severe decline in top speed for runs lasting more than fifteen seconds, where maximal acceleration is utilised. Therefore, when an athlete knows they will have to run for longer than fifteen seconds, they will automatically employ slightly sub maximal acceleration and reach slightly lower top speeds in an attempt to achieve the best possible time for the longer distance. This is clearly demonstrated in analysis of races of 200m and over where athletes exhibit excellent maintenance of slightly lower top speeds than in the 100m dash.

 

Because longer sprint races require athletes to endure a sub maximal pace, the running mechanics used for these events are slightly different to those seen in the short sprints. This is clearly observable if you compare the same athlete running the 100m and then the 400m. For example, the arm action is generally less exaggerated when running the 400m because the athlete is trying to save energy and any additional range of motion that absolutely necessary becomes  inefficient.

 

To ensure an athlete can optimise their technique for running at slightly sub maximal speeds they need to practice. Training that helps them to develop this capacity is termed Specific

 

Share this post


Link to post
Share on other sites

Endurance and is defined as runs lasting greater than 15s at 95-100% intensity where full recovery is taken between reps and sets.

 

While Specific Endurance looks very similar on paper to Speed Endurance the key feature is that the athlete never reaches top speed and so learns to endure a sub maximal pace using slightly different biomechanics. The longer the distance the more compact’ the technique generally becomes and so athletes use different techniques when running different distances. This is why this type of endurance is termed specific because it rehearses all of the factors associated with holding specific sub maximal velocities experienced during competition. Therefore, the distances used for Specific Endurance runs will depend on the distance over which the athlete intends to race. 200m runners will generally stick with distances up to around 250-300m (usually around 30s of work) while 400m runners could go anywhere up to 600m per rep (typically 30-90s).

 

Like Speed Endurance, Specific Endurance workouts are conducted using full recovery between reps and sets e.g. enough recovery to permit the athlete to be able to perform each repetition without a drop off in performance. Again, this will mean longer recoveries are required for more qualified athletes who are reaching higher absolute intensities than for younger developmental athletes. As a rule of thumb full recovery between Specific Endurance runs will typically be between 0.5-1.5 minutes per second of activity. So a 30s rep may take anywhere from 15 to 45 minutes to recover from depending on how fast it was run.

 

Because the absolute intensity of Specific Endurance runs are lower than Speed Endurance the effect on the central nervous system (CNS) is generally less. Therefore, athletes can typically recover faster from Specific Endurance workouts than they can from Speed Endurance. However, because of the highly anaerobic nature of the work the perceived effort is significantly greater during and immediately after Specific Endurance workouts. So the workouts feel harder at the time (because the reps last longer) but are easier to recover from long term (because the absolute intensity is lower).

 

Some examples of Specific Endurance workouts taken from our practice include:

 

Lester’s session:

1x350m, with perfect pace judgement for the 400m. For Nicola Sanders the aim is to go through 100m in 12.0s, 200m in 24.0s and 300m in 36.0 and then finish as fast as possible. Roger Black was capable of doing this session in 10.9s/21.4s/32.2s

 

Khmel’s session:

3x200m. Each run getting slightly faster with the final rep close to 100% - usually around 20.8s for Harry Aikines-Aryeetey.

 

 

Summary for SPECIFIC ENDURANCE

 

Intensity                                                                       95-100% (HIGH)

Rep Duration                                                                15s+

Recovery between runs                                             FULL (0.5-1.5min per second of activity)

Recovery time until next high intensity session      48 hours +

 

 

 

 

 

 

 

SPECIAL ENDURANCE

 

Both Speed Endurance and Specific Endurance runs are performed off of full recovery and aim to rehearse and refine the biomechanics used during competition. While these kinds of workouts certainly have an endurance component to them, the key focus is on developing quality sprinting at race pace velocities.

 

However, there are times when the coach wants to overload the body to create a unique or ‘special’ adaptation. For example, a coach in the short sprints may wish to improve work capacity for repeated maximal acceleration so an athlete’s performance does not drop off as they progress through rounds. For a 200m athlete the coach may wish to get them used to running at a higher percentage of their maximal velocity for a further distance that is currently possible. In the quarter mile the plan may be to have the athlete practice perfect race rhythm and get used to completing the final part of the race at the pace faster than they are currently capable. Special Endurance sessions can be devised as a solution to all of these scenarios and workouts in this category are defined as runs of 95-100% intensity with incomplete recovery between reps and or sets.

 

The most common form of Special Endurance workout is the split run’. Split runs are where a longer distance is split’ into smaller segments with a short rest break between segments. For example a split 600m could be 200m, 1min rest, 200m, 1min rest, 200m. The short breaks allow the athlete to run each 200m faster than they might do in a flat out 600m Specific Endurance  run but still experience a significant challenge to the lactic energy system.

 

Under the split 600m scenario although the velocity reached is higher than it would be in a Specific Endurance run it is still sub-maximal. However, if split runs are performed with more extensive breaks, the athlete can reach their maximum velocity several times in quick succession and this can be a very effective way to overload endurance qualities for a short sprinter.

 

For example a split 150m could be 3x50m and a split 180m could be 3x60m or 2x90m. During split runs the recovery is incomplete and so the fatigue accumulates as the set progresses. Therefore, the first run will feel fairly easy but by the last perceived effort will have increased substantially.

 

Examples of this kind of Special Endurance workout, for elite level athletes include:

 

Lester’s sessions:

      3x(3x60m) with 2min between reps, 10min between sets. Each run of each rep gets faster. Marlon Devonish will typically run 7.2s, 6.8s, 6.5s.

      From blocks run 40m slow down to the 100m finish line. Rest 1min then run 60m back up the track (Marlon will typically run 6.5s for the 60m). Repeat 4 times with 12min rest between sets.

 

 

 

      8x50m with 30s rest between reps (a split 400m); rest 3 min between sets then 4x100m with 45s rest (again split 400m); then 4 min set rest followed by 2x150m with 45s rest between reps (split 300m); 4 min set rest and finally 1x200m

 

Split runs can also be conducted using distances that do not permit the athlete to reach maximum velocity. Such